CS143 Handout 15
Summer 2012 July 11*, 2012

Miscellaneous Parsing

Handout written by Maggie Johnson and revised by Julie Zelenski.
Resolving Ambiguity: A Different Approach

Recall that ambiguity means we have two or more leftmost derivations for the same
input string, or equivalently, that we can build more than one parse tree for the same
input string. A simple arithmetic expression grammar is a common example:

E->E+E|E*E]|(E)|id

Parsing input id + id * id can produce two different parse trees because of ambiguity

E E
AN /W
E + E E. " E
I RN I
id E * E IE + lE id
|
idl id id id

Earlier we discussed how to fix the problem by re-writing the grammar to introduce
new intermediate non-terminals that enforce the desired precedence. Instead, let's
consider what happens if we go ahead and create the LR(0) configurating sets for the
ambiguous version of this grammar:

Io: E'-> E Is E -> E*°E
E->°<E+E E->°<E+E
E->°E*E E->°E*E
E -> «(E) E -> <(E)
E-> «id E-> «id

I1! E'-> E- I6 E-> (E‘)
E->E*+E E->E*+E
E->E«*E E->E**E

Io: E -> (*E) Iy E->E+E-
E->°+E+E E->Ee+E
E->°<E*E E->E**E
E -> *(E)

E-> «id Ig E->E*E-"
E->E*+E

Is: E ->ide E->Ee*E

E->E+°E Ig: E-> (E)e
E->°+E+E

E-><E*E

E-> «(E)

E-> -id

Let's say we were building an SLR(1) table for this grammar. Look carefully at state 7.
In the action table, there are two conflicting entries under the column labeled *: s5 and
r1, a shift/reduce conflict. Trace the parse of input id + id * id up to the point where we
arrive in state 7:

State stack Remaining input
S05154S7 *id $ state 7: next input is *

At this point during the parse, we have the handle E + E on top of the stack, and the
lookahead is *. * is in the follow set for E, so we can reduce that E + E to E. But we also
could shift the * and keep going. What choice should we make if we want to preserve
the usual arithmetic precedence?

What about if we were parsing id + id + id? We have a similar shift/reduce in state 7,
now on next input +. How do we want to resolve the shift/reduce conflict here?
(Because addition is commutative, it actually doesn’t much matter, but it will for
subtraction!)

State stack Remaining input
S05154S7 +id $ state 7: next input is +

Now consider parsing id * id + id. A similar shift/reduce conflict comes up in state 8.

State stack Remaining input
S0S51S5Ss +id $ state 8: next input is +

And what about parsing id * id * id?

State stack Remaining input
S05155Ss *id $ state 8: next input is *

Instead of rearranging the grammar to add all the different precedence levels, another
way of resolving these conflicts to build the precedence rules right into the table.
Where there are two or more entries in the table, we pick the one to keep and throw the
others out. In the above example, if we are currently in the midst of parsing a lower-
precedence operation, we shift the higher precedence operator and keep going. If the

next operator is lower-precedence, we reduce. How we break the tie when the two
operators are the same precedence determines the associativity. By choosing to reduce,
we enforce left-to-right associativity.

There are a few reasons we might want to resolve the conflicts in the parser instead of
re-writing the grammar. As originally written, the grammar reads more naturally, for
one. In the parser, we can easily tweak the associativity and precedence of the
operators without disturbing the productions or adding extra states to the parser. Also,
the parser will not need to spend extra time reducing through the single productions
(T-> F, E-> T) introduced in the grammar re-write.

Note that just because there are conflicts in LR table does not imply the grammar is
ambiguous—it just means the grammar isn't LR(1) or whatever technique you are
using. The reverse, though, is true. No ambiguous grammar is LR(1) and will have

conflicts in any type of LR table (or LL for that matter).

Dangling Else Is Back!

Another example of ambiguity in programming language grammars is the famous
dangling else.

Stmt -> if Expr then Stmt else Stmt | if Expr then Stmt | Other...
which we rewrite for brevity as:
S -> jSeS|iS|a

Here are the LR(0) configurating sets. Where is the conflict in the following collection?

Io: S'-> S I: S->a-

S -> «iSeS

S -> «iS Iy: S ->iSeeS

S-> 3 S->iSe
11: S'-> Se 15: S -> iSe*S

S -> «iSeS

I: S -> i*SeS S -> «iS

S ->i*S S-> ea

S -> «iSeS

S -> «iS Ig: S -> iSeS-

S->ea

Say we are parsing: if S e S. When we arrive in state 4, we have if S on the stack and the
next input is e. Do we shift the e or do we reduce what is on the stack? To follow C

and Java’s rules, we should want the e to associate it with the nearest if. Which action
do we keep to get that behavior?

LL(1) versus LR(k)

A picture is worth a thousand words:

/ unambiguous grammars ambiguous \
gmmmars
/ T LL(K)) LR(k) \
e LR(1)
e LALR(1)"\
4 SLR(1)

LR(0)

LL(0)

o)
S A,

Note this diagram refers to grammars, not languages, e.g. there may be an equivalent
LR(1) grammar that accepts the same language as another non-LR(1) grammar. No
ambiguous grammar is LL(1) or LR(1), so we must either re-write the grammar to
remove the ambiguity or resolve conflicts in the parser table or implementation.

The hierarchy of LR variants is clear: every LR(0) grammar is SLR(1) and every SLR(1)
is LALR(1) which in turn is LR(1). But there are grammars that don’t meet the
requirements for the weaker forms that can be parsed by the more powerful variations.

We’ve seen several examples of grammars that are not LL(1) that are LR(1). But every
LL(1) grammar is guaranteed to be LR(1). A rigorous proof is fairly straightforward
from the definitions of LL(1) and LR(1) grammars. Your intuition should tell you that
an LR(1) parser uses more information than the LL(1) parser since it postpones the
decision about which production is being expanded until it sees the entire right side
rather than attempting to predict after seeing just the first terminal.

LL(1) versus LALR(1)

The two dominant parsing techniques in real compilers are LL(1) and LALR(1). These
techniques are the ones to stash away in your brain cells for future reference. Here are
some thoughts on how to weigh the two approaches against one another:

Implementation: Because the underlying algorithms are more complicated, most
LALR(1) parsers are built using parser generators such as yacc and bi son. LL(1)
parsers may be implemented via hand-coded recursive-descent or via LL(1)
table-driven predictive parser generators like LLgen. There are those who like
managing details and writing all the code themselves, no errors result from
misunderstanding how the tools work, and so on. But as projects get bigger, the
automated tools can be a help, and yacc /bi son can find ambiguities and conflicts that
you might have missed doing the work by hand. The implementation chosen also has
an effect on maintenance. Which would you rather do: add new productions into a
grammar specification being fed to a generator, add new entries into a table, or write
new functions for a recursive-descent parser?

Simplicity: Both techniques have fairly simple drivers. The algorithm underlying
LL(1) is simpler, so it’s easier to visualize and debug. The details of the LALR(1)
configurations can be messy and when trying to debug can be a bit overwhelming.

Generality: All LL(1) grammars are LR(1) and virtually all are also LALR(1), although
there are some fringes grammars that can be handled by one technique or the other
exclusively. This isn't much of an obstacle in practice since simple grammar
transformation and/or parser tricks can usually resolve the problem. As a rule of
thumb, LL(1) and LALR(1) grammars can be constructed for any reasonable
programming language.

Grammar conditioning: An LL(1) parser has strict rules on the structure of productions,
so you will need to massage the grammar into the proper form first. If extensive
grammar conditioning is required, you may not even recognize the grammar you
started out with. The most troublesome area for programming language grammars is
usually the handling of arithmetic expressions. If you can stomach what is needed to
transform those to LL(1), you're through the hard part—the rest of the grammar is
smoother sailing. LALR(1) parsers are much less restrictive on grammar forms, and
thus allow you to express the grammar more naturally and clearly. The LALR(1)
grammar will also be smaller than its LL(1) equivalent because LL(1) requires extra
nonterminals and productions to factor the common prefixes, rearrange left
recursion, and so on.

Error repair: Both LL(1) and LALR(1) parsers possess the valid prefix property. What is
on the stack will always be a valid prefix of a sentential form. Errors in both types of
parsers can be detected at the earliest possible point without pushing the next input
symbol onto the stack. LL(1) parse stacks contain symbols that are predicted but not
yet matched. This information can be valuable in determining proper repairs.
LALR(1) parse stacks contain information about what has already been seen, but do
not have the same information about the right context that is expected. This means
deciding possible continuations is somewhat easier in an LL(1) parser.

Table sizes: Both require parse tables that can be big. For LL(1) parsers, the
uncompressed table has one row for each non-terminal and one column for each
terminal, so the total table sizeis | T| X IN|. An LALR table has a row for each state
and a column for each terminal and each non-terminal, so the total table sizeis | S| X
(INI + ITIl). The number of states can be exponential in the worst case. (i.e., states
form the power set of all productions). So for a pathologically designed grammar,
the LALR(1) could be much, much larger. However, for average-case inputs, the
LALR(1) table is usually about twice as big as the LL(1). For a language like Pascal,
the LL(1) table might have 1500 non-error entries, the LALR(1) table has around 3000.
This sort of thing used to be important, but with the capabilities of today’s machines,
a factor of 2 is not likely to be a significant issue.

Efficiency: Both require a stack of some sort to manage the input. That stack can grow
to a maximum depth of n, where n is the number of symbols in the input. If you are
using the runtime stack (i.e. function calls) rather than pushing and popping on a
data stack, you will probably pay some significant overhead for that convenience (i.e.
a recursive-descent parser takes that hit). If both parsers are using the same sort of
stack, LL(1) and LALR(1) each examine every non-terminal and terminal when
building the parse tree, and so parsing speeds tend to be comparable between the
two.

How Do Real Compilers Do Parsing?

As we saw earlier, the introduction of ALGOL-60 and its specification using BNF was
highly influential. Soon after, it was realized that BNF and context-free grammars were
equivalent (remember Chomsky defined CFG’s in the late 1950’s). Consequently, there
was a lot of theoretical work done on programming languages in the early 1960’s.

Parsing methods became much more systematic as the theoretical work progressed.
Several general techniques for parsing any CFG were invented in the 1960’s. LR
grammars and parsers were first introduced by Knuth (1965) who described the
construction of LR parsing tables. Korenjak (1969) was the first to show parsers for
programming languages could be produced using these techniques. DeRemer (1969,
1971) devised the more practical SLR and LALR techniques. This laid the groundwork

for automatic parser generators. YACC was built by S.C. Johnson in the early 1970’s.
Today, most compilers are created using automatic parser generators.

The idea of LL(1) grammars was introduced by Lewis and Stearns (1968). Predictive
parsers were first discussed by Knuth (1971). Recursive-descent and table-driven
parsing techniques were shown to be useful for programming languages by Lewis,
Rosenkrantz and Stearns (1976). These techniques were widely used in early compilers
but nowadays bottom-up seems more dominant.

The earliest Pascal compilers (1971 on) generated absolute machine code for the CDC
6000 series computers. They were one-pass compilers built around a recursive-descent
parser. Niklaus Wirth and his colleagues found it was "relatively easy to mold the
language according to the restrictions of the parsing method". This worked for a time,
but as they added more and more features to the language, it became difficult to keep
the grammar LL(1), and to not blow out the runtime stack (as programs got longer and
had more nested structures). Eventually, they went on to use automatic parser
generators.

One important event occurred in the history of Pascal as a language: Kenneth Bowles at
UCSD developed the UCSD Pascal compiler for use on both micro and mini-computers.
It included a text editor, compiler, assembler and linker all in one. It was distributed
free to educational institutions and was a primary reason for Pascal’s early adoption as
an educational language. The parser in the UCSD version was recursive-descent.

C was designed by Dennis Ritchie. Back in the 1960’s, Ritchie was a Harvard physics
major. In 1968, he went to work for Bell Labs and was teamed up with Ken Thompson,
who was an electrical engineer from Berkeley. Given their assignment to "think about
interesting problems in computer science", they got intrigued by operating systems. In
the early 1970’s, researchers at Bell Labs were working on an OS called Multics which
was a multiuser, time-share system. The programmers in the labs loved this system
because they were used to doing things the old-fashioned way (giving a batch of cards
to an operator and waiting). Consequently everyone was using Multics which
unfortunately, cost a lot of money to run, which eventually lead the company to
abandon Multics because of its expense. Ritchie and Thompson, however, would just
not go back to doing things the old way. They decided to design an operating system
just for themselves (and their lab colleagues).

Thompson wrote up a proposal and was flatly turned down (management did not need
another Multics). He was not discouraged! He managed to find an old PDP-7, and he
and Ritchie wrote the first version of UNIX. In time, they realized they would not get
too far running their operating system on an obsolete computer. So, they presented a
new proposal to create an editing system for office tasks. It was approved, and the two

got a brand-new PDP-11 to work with. By 1971, UNIX was completed and its use inside
Bell Labs began to grow.

Thompson and Ritchie wrote the first version in assembly language, which meant it
worked only on PDP-11’s. They realized that this had to change if people were really
going to use their operating system outside Bell Labs. Back in those days, a lot of work
was done in England on the concept of "high- and low-level languages in one". A group
working at the University of London and Cambridge designed a language that was
high-level enough to not be tied to any particular computer, and low-level enough to
allow manipulation of bits. The resulting language was CPL (combined programming
language). It was never very popular because it was so large, but a stripped-down
version called BCPL (basic CPL) did attract some users. Thompson and Ritchie heard
about these developments and took BCPL and transformed it first into B and then into
C in collaboration with Brian Kernighan. UNIX was then rewritten in C, and UNIX
went on to become an industry standard. C established itself as the ultimate
"programmer’s language", i.e., a language written by serious programmers for serious
programmers.

The earliest C parsers were recursive-descent, but eventually they were written with
yacc. All these early compilers were two-pass, with an optional third pass. The first
pass handled lexical and syntax analysis, the second pass was machine-dependent
assembly code generation, and the optional last pass handled code optimization.

Bibliography
A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. Reading, MA:
Addison-Wesley, 1986.

Appleby, D. Programming L anguages. Paradigm and Practice. New York, NY: McGraw-
Hill, 1991.

DeRemer, F. Practical Trandators for L R(k) L anguages. Ph.D. dissertation, MIT, 1969.

DeRemer, F. “Simple LR(k) Grammars,” Communications of the ACM, Voal. 14, No. 7,
1971.

Johnson, S.C., “Yacc - Yet Another Compiler Compiler”, Computing Science Technical
Report 32, AT& T Bell Labs, 1975.

Korenjak, A. “A Practical Method for Constructing LR(k) Processors,” Communications of
the ACM, Vol. 12, No. 11, 1969.

Knuth, D. “On the Trandation of Languages from Left to Right,” Information and
Contral,Vol. 8, No. 6, 1965.

Knuth, D. “Top-Down Syntax Analysis,” Actalnformatica, Vol 1., No. 2, 1971.

Lewis, P. and Stearns, R. “ Syntax-Directed Transduction,” Journal of the ACM, Voal. 15, No.
3, 1968.

Lewis, P. Rosenkrantz, D., and Stearns, R. Compiler Design Theory. Reading, MA:
Addison-Wesley, 1976.

MacL ennan, B. Principles of Programming Languages. New Y ork, NY: Holt, Rinehart,
Winston, 1987.

Ritchie, D., and Thompson, K. “The UNIX Time-Sharing System,” Communications of the
ACM, Vol. 17, No. 7, 1974.

Wirth, N. “The Design of a Pascal Compiler,” Software - Practice and Experience, Vol. 1,
No. 4, 1971.

